LARGE PELAGIC LOGBOOK NEWSLETTER - 1996

Jean Cramer and Heather Adams

U.S. DEPARTMENT OF COMMERCE

National Oceanic and Atmospheric Administration
National Marine Fisheries Service
Southeast Fisheries Science Center 75 Virginia Beach Drive
Miami, Florida 33149

LARGE PELAGIC LOGBOOK NEWSLETTER - 1996

by

Jean Cramer and Heather Adams

U.S. DEPARTMENT OF COMMERCE
 William M. Daley , Secretary

National Oceanic and Atmospheric Administration
D. James Baker, Under Secretary For Oceans and Atmosphere
National Marine Fisheries Service
Rolland A. Schmitten, Assistant Administrator for Fisheries

January 1998

This Technical Memorandum series is used for documentation and timely communication of preliminary results, interim reports, or similar special-purpose information. Although the memoranda are not subject to complete formal review, editorial control, or detailed editing, they are expected to reflect sound professional work.

Abstract

The National Marine Fisheries Service (NMFS) does not approve, recommend or endorse any proprietary product or material mentioned in this publication. No reference shall be made to NMFS, or to this publication furnished by NMFS, in any advertising or sales promotion which would indicate or imply that NMFS approves, recommends, or endorses any proprietary product or proprietary material mentioned herein or which has as its purpose any intent to cause directly or indirectly the advertised product to be used or purchased because of this NMFS publication.

Contribution MIA-9798-o§ from the Southeast Fisheries Science Center, Miami Laboratory, Oceanic Pelagics Division

This report should be cited as follows:
J. Cramer and H.M Adams. 1997. Large Pelagic Logbook Newsletter - 1996. NOAA Technical Memorandum NMFS-SEFSC-407, 26 p.

Copies may be obtained by writing:

Dr. Jean Cramer
National Marine Fisheries Service
Southeast Fisheries Science Center
Miami Laboratory
75 Virginia Beach Drive
Miami, FL 33149
Jean.Cramer@noaa.gov

National Technical Information Center 5825 Port Royal Road
Springfield, VA 22161
(703)487-4650 FAX (703)321-8547

Rush Orders: (800)336-4700

This is the seventh annual Large Pelagic Logbook Newsletter. The primary purpose of this report is to summarize data and activities related to the mandatory large pelagics logbook and observer programs. This newsletter serves as a vehicle for dissemination of information to those directly involved in the fishery. In addition to updating catch, effort, CPUE, and location information, and detailing revisions to logbook reporting in 1998, this year's newsletter includes sections pertaining to swordfish, yellowfin, bigeye and albacore stock status, bycatch, mandatory dealer reporting, the longline observer program, and other related studies.

Comments and suggestions are invited; see section "WHOM TO CONTACT FOR WHAT."

COMPARISON OF 1994-1996 LOGBOOK CATCH AND EFFORT DATA

Nine summary tables are included in this newsletter. The numbers of swordfish, tunas, and billfish reported caught, by area, for 1994, 1995 and 1996 (preliminary) are given for longline (Tables la-1c) and gillnet (Tables 2a-2c). Longline effort is reported in hooks and numbers of boats, gillnet and pairtrawl effort is reported in sets and numbers of boats. The longline boat statistics are from logbook reports that were considered to represent all pelagic longline sets including summary records; bottom longline records were excluded. Exclusion of longline records does not exclude all set targeting species other than swordfish and tuna.

The gillnet statistics represent all sets that reported fishing this gear type. Some changes in the tabulated data for earlier years and reported previously were due to additional revisions in the database.

Locations of areas are shown in Figure 1. Definitions are as follows: area 1-Caribbean ${ }^{1}$ (CAR), area 2 - Gulf of Mexico (GOM), area 3 Florida East Coast ${ }^{1}$ (FEC), area 4 -South Atlantic Bight ${ }^{\prime}(\mathrm{SAB})$, area 5 - Mid Atlantic Bight ${ }^{1}$ (MAB), area 6 - Northeast Coastal ${ }^{1}$ (NEC), area 7 Northeast Distant ${ }^{1}$ (NED), area 8 - Sargasso ${ }^{1}$ (SAR), area 9 - North Central Atlantic (NCA), area

10-Tuna North ${ }^{1}$ - (TUN), and area 11-Tuna South ${ }^{1}$ (TUS).

Figure 1. Map designating the eleven areas used in analysis of the swordfish logbook data.

Between 1995 and 1996 reported longline effort (hooks) decreased by 33% in the NED and decreased by over 50% in the MAB and NCA. Reported effort increased by half in the SAB and more than tripled in the SAR. Effort increased greatly in TUS as the number of boats reporting fishing in the area went from one in 1995 to eight in 1996.

Preliminary reported longline effort for 1996 was slightly higher than reported for 1995 . The total number of longline boats decreased in 1996 from the levels reported in 1994 and 1995.

The reported yellowfin tuna catch for the three-year period was approximately 70,000 , 83,000 , and 62,000 fish, respectively. This represents a 25% decrease in numbers of reported yellowfin catch from 1995 to 1996.

In the GOM, the reported catch of yellowfin in numbers increased annually from 1990 through 1992; this trend has reversed from 1992 to 1996. In the MAB, the reported yellowfin catch in numbers increased annually from 1992 through 1995, but this trend has reversed in 1996.
${ }^{1}$ These are arbitrary areas and do not constitute official geographic areas.

In 1994 there were approximately 104,000 swordfish tabulated from longline records (caught $=$ kept + discarded). There were approximately 103,000 swordfish reported in 1995; and 95,000 reported in 1996(preliminary). The corresponding reported fishing effort for the three years was roughly $8.9,10.0$, and 10.2 million hooks, respectively (Tables 1a-1c). Reported swordfish catch was similar in 1994 and 1995, but declined in 1996. The number of reported hooks fished increased by 2%, in 1996 compared to 1995 .

With the exception of the GOM and SAR, near shore areas (Figure 1), reported decreases in annual swordfish catch by longline boats. Swordfish catch in the NED and NCA also decreased in 1996. Other offshore areas reported increased swordfish catch.

The number of yellowfin tuna and swordfish reported caught by gillnet boats decreased from 1994 (1,042 swordfish and 292 yellowfin) to 1995 (1,007 swordfish and 141 yellowfin) to 1996 (880 swordfish and 64 yellowfin) (Tables 2a-2c).

REPORTED FISHING LOCATIONS IN 1994, 1995, AND 1996

The location of reported commercial pelagic fishing effort by year for 1994-1996 is shown in Figures 2-4. The general pattern for reported sets is similar across the three years along the U.S. coastline. Fishing effort increased and expanded geographically in the southern offshore areas (NCA, TUN, and TUS).

CPUE DATA

Tables 3a-3c represent 1994, 1995, and 1996 (preliminary) data, respectively, for swordfish and yellowfin tuna. These data are yearly totals, by areas as (defined in Figure 1) for: number of fish Kept; number Discarded dead and Discarded alive; Kept+Discarded; effort in HOOKS; the Number of sets; and the average of the individual catch rates, $\mathrm{AV}(\mathrm{C} / \mathrm{E})$ (equivalent to average CPUE). This
summary includes all gears that reported fishing with hooks that were not thought to be summary records. As such, this would include effort directed at species other than swordfish or tunas.

The totals reported in Tables la through lc are different from the totals in tables 3a through 3c because different criteria were used in selecting the records to be used. Tables la through 1c represent data from longline boats only, including summary reports filed by longline boats. Tables 3a through 3c represent all records that reported hooks except summary reports. Gears represented include, but are not limited to, longline, bottom longline, and rod and reel boats.

The data summarized here are considered to represent nominal CPUE. No attempt has been made in this summary to standardize the data for factors not related to fish abundance, but known to affect the CPUE values. Those analyses are carried out for the purpose of stock assessments, and are reported elsewhere.

The reported swordfish catch rates in 1994 for the CAR, FEC, SAB, NED and the NCA were, respectively, approximately 2.7 fish/ 100 hooks, 2.8 fish/100 hooks, 2.0 fish/ 100 hooks, 2.6 fish $/ 100$ hooks and 1.9 fish/ 100 hooks (Table 3a); in 1995 approximately 2.3 fish/ 100 hooks, 2.4 fish/ 100 hooks, 1.3 fish $/ 100$ hooks, 2.8 fish $/ 100$ hooks and 1.9 fish $/ 100$ hooks (Table 3b); and in 1996 (preliminary) approximately 2.0 fish $/ 100$ hooks, 2.6 fish $/ 100$ hooks, 1.2 fish/ 100 hooks, 2.5 fish $/ 100$ hooks and 1.3 fish $/ 100$ hooks (Table 3c). The best reported 1996 swordfish catch rates in an offshore area were in the TUS (2.5 fish/100 hooks).

Average reported CPUEs for yellowfin, on an annual basis, have been consistently high from the GOM fishery until 1996. The reported catch rates in the GOM in 1.994 were approximately 2.7 fish/100 hooks (Table 3a); in 1995 approximately 2.7 fish/100 hooks(Table 3b); and in 1996 approximately 0.8 fish/ 100 hooks (Table 3c). The highest CPUE reported for 1996 was 2.7 fish/ 100 hooks in the MAB.

Figure 2. Location and density of reported longline effort in 1994.

Figure 3. Location and density of reported longline effort in 1995.

Figure 4. Location and density of reported longline effort in 1996.

Monthly reported CPUEs for swordfish, yellowfin, bigeye, and albacore from 1987 to 1996 are shown in Figures 5a -5d. The error bars represent ± 2 standard deviations from the mean.

NUMBERS OF PERMITTED VESSELS

A compilation of activity related to the vessels permitted during the period 1987 through 1996 is presented in Table 8. "Fished" implies a vessel submitted at least one positive fishing report during that year, "Caught Swordfish" means the vessel reported catching at least one swordfish during that year and "Caught Swordfish in 5 months" means the vessel reported catching at least one swordfish per month in at least five months of that year. "Hooks Reported" includes all submitted logbooks whether or not they represented single pelagic longline sets, summary records, bottom longline records, or sets with less than 100 hooks fished. For this reason, these numbers are higher than the numbers in Tables la-lc.

SWORDFISH STOCK STATUS

In 1996, the status of the North Atlantic swordfish resource was assessed by ICCAT using both non-equilibrium stock production models and virtual population analyses (VPA) based on catch and CPUE data through 1995. No new Atlantic stock assessment was conducted in 1997. In 1997 updated North and South Atlantic CPUE data were examined and show similar trends as those in recent years. The current base case assessments indicate that the North Atlantic swordfish resource has continued to decline despite reductions in total reported North Atlantic landings from peak values in 1987. Although some fleets have reduced catch levels and partial fishing mortality rates, the status of the resource continued to decline because recent landings have exceeded surplus production. The decline in stock size is reflected in declining CPUE's for several fisheries. An updated estimate of maximum sustainable yield from production model analyses is 28.6 million lbs ($13,000 \mathrm{MT}$) whole wt (with an 80% confidence range from 11.7 to 36.3 million lbs. whole wt). Since 1982, only in one year (1984) have north Atlantic swordfish
catches been less than 28.6 million lbs; preliminary estimates of catches in 1995 were about 37.2 million lbs. ($16,900 \mathrm{MT}$).

A summary of the resource status as estimated by the 1997 ICCAT is shown in the Table 4. In the North Atlantic, ICCAT estimated that at the beginning of 1996, the exploitable swordfish biomass was about 58% of the level needed to produce MSY (80% confidence intervals ranged from 41-104\%). Furthermore, the estimates of fishing mortality rates for 1995 were estimated to be 2.05 times the fishing mortality rate at MSY. ICCAT estimated that catches in 1995 and anticipated landings in 1996, were too high to prevent further declines in the North Atlantic swordfish resource status.

A quantitative assessment for the South Atlantic stock assumption was conducted for the first time in 1996. Biomass at the beginning of 1996 was estimated to be 99% of the biomass needed to produce MSY, the 1995 fishing mortality rate was estimated to be 1.24 times the fishing mortality rate at MSY, and the surplus production for 1996 was estimated to be about 14,600 MT. Reported landings in 1995 (about 20,600 MT) and 1996, preliminary, (about 17,600 MT) have exceeded this level. These analyses indicate that current levels of harvest are not sustainable: thus it is likely that the stock will decline further.

ALBACORE STOCK STATUS

Equilibrium yield per recruit and spawning potential ratio analysis made by the SCRS in 1996 indicated that the northern stock is at or near full exploitation (Table 5). Assuming the fishing mortality rate as estimated by the VPA for 1995, the analysis reflects the current $F_{1995}(0.702)$ close to F $\max ^{(0.880)}$ and greater than $\mathrm{F}_{0.1}(0.375)$. Assuming current F for older ages is closer to the level estimated for 1990-1992, then current F would be closer to $\mathrm{F}_{0.1}$. The current level of spawning biomass for these analyses is estimated as 16.5% and 20% of the unexploited level respectively. ICCAT concluded that the stock is near full

Figure 5b. Monthly Yellowfin CPUE's
1987-1996

Figure 5c. Monthly Bigeye CPUE's 1987-1996

Figure 5d. Monthly Albacore CPUE's
exploitation and that fishing mortality should not be increased above its çurrent level..

An age structured production model was used for assessment of South Atlantic albacore abundance. The assessment indicated that MSY is about 58.5 million lbs ($26,600 \mathrm{MT}$) and the current (1995) replacement yield is 58.3 million lbs ($26,500 \mathrm{MT}$). The estimate of the ratio of current biomass to that at which MSY is achieved is 0.78 . The fishing mortality rate is 116% of that needed to achieve MSY (Table 5). ICCAT has recommended limiting catches of South Atlantic albacore to 90% of the 1989-1993 levels.

BIGEYE STOCK STATUS

Assesment of bigeye stock status was updated in 1997. Since 1993, total Atlantic bigeye catch has been larger than 198 million lbs ($90,000 \mathrm{MT}$), an increase from the 1989-1990 level of more than 66 million lbs ($30,000 \mathrm{MT}$). This increase was due primarily to increases in catch by purse seine of small fish and longline fisheries of large fish. The MSYs estimated by the production models and the VPA were much smaller than the current catch of $154-198$ million lbs ($70-90,0000 \mathrm{MT}$). Although MSY levels were not well determined, it is highly likely that the current catch level cannot be sustained in the long term and current catches may lead to a large reduction in recruitment. Reduction of the total catch to at least the 1991-1992 catch levels of 187 million lbs ($85,000 \mathrm{MT}$) was recommended by ICCAT (Table 6).

Further increases in the catch of small fish, that recently occurred due to intensive fishing on schools associated with floating objects by the surface fisheries, will result in a decrease in catch over the long term as well as an increased likelihood of recruitment over-fishing.

YELLOWFIN STOCK STATUS

In 1994, the status of the total Atlantic yellowfin stock was assessed by ICCAT using equilibrium and non-equilibrium production models. In 1997 and 1996, ICCAT applied only an
equilibrium model to updated data and the 1994 VPA was projected forward using recent catch data. The 1994, 1995, and 1996 analyses all indicate that the stock of Atlantic yellowfin is at a level close to full exploitation (Table 7). ICCAT concluded these analyses imply that any increase in effort is likely to result in a fishing mortality rate that exceeds the level corresponding to MSY and a stock biomass below the mimmum level that can support MSY.

ICCAT recommended restricting fishing mortality to 1992 levels and finding effective ways to reduce mortality on small yellowfin.

MANDATORY REPORTING IN THE ATLANTIC LARGE PELAGIC FISHERY

Federal regulations require that both fishermen and dealers assist the conservation and management of large pelagic species by providing statistics on fishing activity and seafood production respectively. Fishermen are required to submit data on daily fishing activity and catch, which includes individual carcass weights for the swordfish and other large pelagic species. Dealers are required to provide summary data on the landings (purchases) by market or size category and the price or value for the respective categories. Both fishermen and dealers are required to maintain an active Federal permit to fish for or purchase swordfish.

Fishermen Reporting.

All fishermen that fish for and land swordfish are required to have an active permit and report the catches from every set or daily trip. In addition to a completed logbook sheet for every set, fishermen are required to submit a copy of the weigh-out or sales receipt that provide the weights for the individual swordfish and other large pelagic species that are caught on the fishing trip. If either of these requirements are not met, the vessel is not in compliance and the vessel's permit can be revoked or denied at the annual renewal.

If the vessel did not fish during a calendar month, a "no-fishing" report must be submitted.

All logbook reports and weigh-outs are to be submitted to the

Southeast Fisheries Science Center
Logbook Program
P.O. Box 491740

Key Biscayne, Florida 33149-9915
Questions or requests for clarifications can be directed to Logbook Program at the Southeast Fisheries Science Center, telephone number (305) 361-4581 or (305) 361-4463.

During 1996, an active permit for the large pelagic fishery was issued to 1,245 vessels. These permits were not necessarily active during the entire calendar year, nor did all of these vessels actively fish for or catch large pelagic species. If logbooks and weighouts were not submitted for the catch of the 12 months in the reporting period prior to the expiration of the permit, the application for renewal was denied until all reporting was brought up to date.

Dealer Reporting.

Permitted dealers are required to provide reports twice a month to the Science and Research Director for either the Northeast Region or the Southeast Region, depending on the dealer's geographical location. Complete and timely information from dealers is critical because these data are used to monitor the fishery quota for swordfish. Dealers are instructed to provide the U.S. Coast Guard documentation or state registration number for every vessel from which they purchased swordfish during each two week reporting period. This information is used to check the dealer data against the daily catch data submitted by fishermen. This cross reference helps the SEFSC determine that all landings are included in the quota monitoring process and it also guards against potential double counting.

Reports should be mailed to:
Science and Research Director
Southeast Fisheries Science Center
National Marine Fisheries Service
75 Virginia Beach Drive
Miami, Florida 33149
Attention: A. Bertolino
except for a dealer whose principal place of business is in an Atlantic coastal state from Maine through Virginia. The appropriate address for those dealers is:

Northeast Regional Office
National Marine Fisheries Service
1 Blackburn Dr, Gloucester, MA 01930
Attention: Greg Power

For most dealers in the Northeast Region, NMFS port agents contact and collect the dealer reports.

At sometime during calendar year 1996, a Federal dealer permit was held by 289 dealers. Of this total, 93 dealers had their primary location in the Northeast Region and the remaining 196 dealers had their primary location in the Southeast Region, which includes the Caribbean. Overall, compliance with the reporting requirements has been good in this area. However, dealers that do not cooperate with the NMFS and do not submit the required bimonthly reports will have their application for a permit renewal denied, and NMFS Law Enforcement will be notified. It should be noted that a report is required for every two week period, even if large pelagic species were not purchased. If no purchases were made, the respective Center Director must be informed. In the Southeast Region, a form so-stating must be submitted.

SWORDFISH LANDINGS

The Southeast Fisheries Science Center (SEFSC), Miami Laboratory, is responsible for
compiling the landings of U.S caught Atlantic swordfish from mandatory reporting data. The monthly reported landings for 1990-1996 may be found in Table 10. U.S. Atlantic swordfish landings decreased each year from 1990 to 1994, increased somewhat in 1995, then decreased again in 1996.

Monthly cumulative annual landings of U.S. Atlantic swordfish are compared in Figure 6 for years 1990-1996. Yearly U.S. Atlantic swordfish landings from 1991 to 1996 were lower than 1990 landings. These lower levels are, in part, the result of the minimum size regulation and due to fishery closures when allowable landing levels for the directed fishery were achieved.

Figure 6. SWORDFISH LANDINGS

SWORDFISH LANDED IN THE U.S.
$1,000 \mathrm{lbs} \quad 1,000 \mathrm{lbs}$.
Year
Dressed wt. Whole wt.
1989
1990
1991
1992
1993
1994
1995
1996
10,582
14,075
9,107 12,112
7,142 9,499
6,383 8,489
6,274 8,345
5,578 7,419
6,764 8,996
$\mathbf{5 , 8 8 9} \quad \mathbf{7 , 8 3 2}$

SWORDFISH < 41 LBS. DRESSED WEIGHT NUMBER AND PERCENT LANDED BY MONTH BY AREA

The cumulative percent of fish landed less than 41 lbs dressed weight from all areas and all months fell from 41% in 1990 to 13% in 1993 and to 16% in 1996 (Table 11). The within area percentage landed catch of fish less than 41 lbs decreased in most areas between 1991 and 1995, but increased slightly in 1996 (Table 11). The highest numbers of undersize fish landed in 1996 were from the GOM and CAR regions (Tables $10,11 \& 12$).
SWORDFISH < 41 LBS. DRESSED WEIGHT PERCENT LANDED

The proportion of U.S. Atlantic swordfish landed which were smaller than 41 lbs dressed weight has decreased since 1990 (Figure 7). In 1990 the highest number of fish landed were in the $21-41 \mathrm{lb}$ category. In 1991 this peak shifted to the $41-60 \mathrm{lb}$ category where it has since remained.

Figure 7. U.S. CATCH AT SIZE

SWORDFISH SIZE FREQUENCY

The proportion of swordfish landed which were less than 41 lbs dressed weight in size frequency samples from U.S. longline vessels, decreased from 1989 through 1995, then went up slightly in 1996 (Figure 8). This decrease resulted from the minimum size measure put in place in mid 1991.

Figure 8. SWORDFISH SIZE FREQUENCY

BYCATCH ESTIMATION

The 1996 observer and 1996 logbook records were used to estimate the numbers of dead discarded by the U.S. commercial fleet in 1996. Dead discards were estimated for swordfish, blue marlin, white marlin, and sailfish.

DATA COLLECTION AND ANALYSES

In a comprehensive study on swordfish reproduction, gonadal tissue from 2,884 female swordfish were collected for use in analysis of ovarian development, maturity stages, and fecundity estimates for female swordfish. Fecundity estimates were was based on microscopic examination of whole oocytes. Female swordfish produce eggs in batches and spawn about once every three days during the spawning season. One swordfish was estimated to produce over 9 million eggs (Arocha F., 1997).

Sex ratio information has been collected from over 18,500 Atlantic swordfish specimens sampled from 1990 through 1996. The available sex-ratio at size information was used to estimate the catch at age separately for female and male swordfish in the U.S. catch (Turner et al, 1996). This methodology was applied to catch at size data from 1985 through 1995 in support of assessment analyses designed to accommodate sexually dimorphic growth patterns. NMFS scientists continue to work with other ICCAT scientists to
develop a uniform method for calculation sex specific inputs to improve stock status evaluations, especially evaluations of the female spawning biomass component of the stock.

The number of tagged swordfish, released by U.S. longline vessels has substantially increased since the U.S. implemented minimum size regulations in 1991, in conformity with ICCAT recommendations. Most of these fish were smaller than the minimum size at time of release. Since 1991, annual releases have averaged about 1,200 fish, whereas average annual releases of tagged swordfish for 1988-1990 averaged about 350 fish. Reported recoveries of tagged swordfish have likewise increased since implementation of the minimum size. Since 1991, the annual number of swordfish tag recoveries reported has averaged more than 22 fish (in 1994 a total of 54 tagged swordfish were reported recaptured), while the annual average number reported from the period 1988-1990 was about 10 .

During 1997 several sampling projects related to bluefin tuna stock structure and reproductive biology were initiated by NMFS and several academic institutions, and international cooperation was requested. Research on stock structure moved into the second phase in which samples from each of the two spawning areas would be compared to determine if differences in genetic frequencies exist. Research on micro constituents in bluefin otoliths is proposed for 1998 and 1999 and samples from young animals are needed from eastern and western fisheries. Research on developing an assay to determine sexual maturity from muscle is also proposed for 1998 and 1999 and samples are also needed from mature animals from eastern and western fisheries. During 1997, U.S. scientists collected samples for all of these projects (including more than 150 samples from small bluefin) and received statements of interest in cooperation for some of the projects from Canadian, Japanese, French, Moroccan and Spanish scientists

Studies related to genetic evaluations of the number of fishery management units of Atlantic bluefin are being coordinated by the NMFS laboratory in Charleston, S. C., in collaboration with researchers at FISHTEC. Research on regions in the mtDNA or genomic DNA indicates that these contain a sufficient amount of genetic variation to be informative in stock structure analyses. During 1996 sampling of landings of bluefin tuna for this research covered a broad range of age/size categories, while in 1997 sampling concentrated on $0-3$ year old bluefin. The 1997 sampling was not as successful as hoped because of reduced bag limits in some areas and months and because of legal concerns about trying to catch and sample bluefin smaller than ICCAT's recommended minimum size (6.4 kg) and especially the 1.8 kg limit which has no tolerance.

PELAGIC OBSERVER PROGRAM

The National Marine Fisheries Service (NMFS) continues its scientific observer sampling of the U.S. large pelagic fleet, as mandated by the U.S. Swordfish Fisheries Management Plan. Scientific observers are placed aboard vessels participating in the Atlantic large pelagic fisheries by the Southeast Fisheries Science Center (SEFSC) and the Northeast Fisheries Science Center NEFSC) since 1992. Over this time period, coverage by the SEFSC Pelagic Observer Program (POP) took place, but is not limited, to vessels fishing in the Atlantic south of Virginia. The scientific observer program contracted and monitored by the NEFSC was responsible for large pelagic fleet fishing the waters of the Mid-Atlantic Bight ${ }^{1}$ to the Grand Banks. Beginning in 1996, the SEFSC assumed the responsibility of covering all of the geographical areas of the northwest Atlantic.

A scientific observer is placed on board the vessel to record detailed information on gear characteristics, the location and time of the gear set and retrieval, environmental conditions, the condition and status of the animals caught by the gear (alive or dead, kept or discarded), as well as morphometric measurements (length and weight)
and sex identification when possible (Figure 9). Observers also record the occasional interaction of marine mammals and sea turtles. The collection of biological samples (anal finrays, heads, reproductive, heart tissue, etc.) from some animals are used to support research studies to learn more about fish biology and life history behavior.

Catch data collected between May of 1992 and December of 1994 by the POP has been summarized in two published newsletter (NOAA Technical Memorandum, NMFS-SEFSC-347 and 377) which are available upon request. The POP continued its coverage through 1996 and data through mid 1997 are now computerized for analysis. Of the fish recorded by observers from 1992-1996 and summarized in various species groups, (Figure 9), swordfish was the highest percent occurrence (29\%) species.

1992-1996
Figure 9. Catch reported by scientific observers on U.S. longline vessels: swordfish (a), billfish (b), yellowfin, bigeye and bluefin tuna (c), other tunas (d), sharks and rays (e), unknown species ()), finfish (g), marine turtles, marine mammals, and birds (h).

INSTRUCTIONS FOR USING THE PELAGIC LOGBOOKS FOR 1998

Samples of forms and directions for filling out forms are presented in figures $10-15$. There are 4 forms used for pelagic logbook reports in

1998: (1) a "trip summary" form, (2) a voluntary cost and earnings form, (3) a "set" form, and (4) a "no fishing " form. The trip summary form must be completed for every fishing trip when swordfish are caught and retained on board. A set form must be completed for ever set made. A trip summary, set forms and a "tally" or weigh-out sheet must be submitted for every completed trip.

The voluntary cost and earnings form is used to provide information on the costs associated with the fishing trip. This information is voluntary.

The "no-fishing" form may be used to report no fishing in the swordfish/large pelagic, South Atlantic snapper-grouper, Gulf of Mexico reef fish, and shark fisheries. If the vessel did not fish in more than one of these fisheries, ONLY SUBMIT ONE "NO-FISHING" FORM. Check the space by each of the fisheries in which the vessel did not fish. Do NOT check fisheries for which your vessel does not have an active permit.

All forms are to be mailed in the preaddressed, postage-paid envelopes that are included. If you mail the forms in another envelope, please use the following address:

NATIONAL MARINE FISHERIES SERVICE ATTN: LOGBOOK PROGRAM P.O. BOX 491500
 KEY BISCAYNE, FLORIDA 33149-9916

If there are question regarding completion of this form, please contact the Logbook Program at (305) 361-4485.

Monthly reporting for individuals holding a Swordfish permit will be considered complete and in compliance with the regulations only if 1) the trip summaries for each trip completed during the month, individual set records for each set made during the trip(s), and tally records for all fish sold are provided or, 2) a no fishing report is provided.

Again, as noted on the new logbook forms, use of the current year forms will be necessary
for compliance. Further, all old forms should be destroyed upon receipt of the 1998 forms.

WHOM TO CONTACT FOR WHAT

Any questions concerning Atlantic large pelagic resources swordfish projects at the Southeast Fisheries Science Center, NMFS, can be directed to Dr. Gerald Scott at (305) 361-4596. Questions concerning processing and analyzing the logbook data can be directed to Dr. Jean Cramer at (305) 361-4493. Information concerning permits can be directed to Ed Burgess at (813) 893-3722. Those needing 1993 logbooks can contact Ernie Snell at (305) 361-4462. Questions about the observer program should be directed to Dennis Lee (305) 361-4247 or Cheryl Brown (305) 361-4275. If you have comments on this newsletter, or other comments, you can write them on your logbook reports or send them to Dr. Jean Cramer, SEFSC, NMFS, 75 Virginia Beach Drive, Miami, FL 33149.

REFERENCES

Arocha, F. 1997. The reproductive dynamics of swordfish, Xiphias gladius L., and management implications in the North Western Atlantic. Ph.D. dissertation, University of Miami, Miami, FL, 383p.

Turner, SC, V. R. Restrepo, and f. Arocha. 1996. Swordfish catch at size and catch by sex. SCRS/96/150.

Figure 10. 1998 Pelagic Logbook - Trip Summary Form (The Blue Book)

OMB NO. 0648-0016 EXP.9/30/2000

1998 PELAGIC LOGBOOK TRIP SUMMARY

Vessel Name:			Capt. Signature:			
Vessel No.:			Contact Telephone:	(-
Port \& State of Departure:			Port \& State of Landing:			
Date of Departure:	1	$/ 1998$	Date of Landing: First Day of Offloading:		1	/ 1998
					1	/ 1998
			Last Day of Offloading:		1	/ 1998
Number of Sets Placed:			Date of First Set:		1	/ 1998
Number of Days Fished:			Date of Last Set:		1	/ 1998
Dealer Name(s):			Federal Dealer Pe No.			

Do not write in this section of the form. Please complete the cost information on the second page of the 3-page set. Although the cost information is voluntary, it will assist the National Marine Fisheries Service to determine the effect of future regulations on the swordfish and other large pelagic fisheries.

Figure 11. INSTRUCTIONS FOR PELAGIC LOGBOOK TRIP SUMMARY FORMS

Instructions for the Trip Summary Form
Please use a ball point pen and print clearly.
On the blue form (top page), record the following:

- Vessel Name
- Vessel No.: U.S. Coast Guard vessel identification number or state registration number as recorded on permit application
- Capt. Signature: signature of the captain for the trip
- Contact Telephone: telephone number of person responsible for the records
- Port \& State of Departure: location of port from which the trip commenced
- Date of Departure: calendar day on which the trip was started
- Port \& State of Landing: location of port that vessel arrived in
- Date of Landing: calendar day that vessel returned to port
- First day of Offloading: calendar day(s) that vessel began offloading fish
- Last day of Offloading: calendar day(s) that vessel finished offloading fish
- No. of Sets Placed: number of times the fishing gear was set during the trip
- No. of Days Fished: number of days that fishing gear was used
- Date of First Set: calendar day that fishing gear was first set
- Date of Last Set: calendar day that fishing gear was last used
- Dealer Name(s): list of names of dealers purchasing the harvest
- Federal Dealer Permit Number(s)

Remove page, attach corresponding set forms and tally sheet, and mail within 7 days.
The trip summary information recorded on the blue form will be transferred to the following green form where the expenditures and payments information is requested.

NOTE: All data provided are CONFIDENTLAL and will be used to determine the impact of existing and proposed management policies on fishery participants. Consistent and accurate reporting is critical to the success of future policies in achieving the stated objective of increasing net benefits.

On the green form (second page), record the following:

- Expenditures on Supplies: quantity and total cost of bait, fuel, and ice used during the trip and the total costs of docking and unloading fees, tackle/gear (e.g., light sticks, line, gangions, hooks, buoys), groceries, and other miscellaneous expenses.

Note: If amy of these supplies were not purchased for this trip (e.g. light sticks are left over from previous trips, bait is harvested prior to fishing in the directed fisheries, or the vessel has an ice machine on board) please estimate and enter the value of the quantities used during the trip. If this is not possible, please make a note of this on the green form.

- End of Trip Payments: total payments made to the owner (if not owner-operated), captain, and crew, also note the total number of crew members (excluding the captain) that will share the crew payment.
This page should be sent when all the information is available, but no later than 45 days after the sale of the fish.

Figure 12. 1998 Pelagic Logbook - Voluntary Cost and Earnings Questions

Trip Expense Summary (confidential)	
Quantity	Total Cost
Fuel.	
Bait (1purchased by boxes, please convert to pounds) pounds	
Ice (If werchased by bloch, please convert to pounds) pounds	
Docking/Unloading Fee	\$
Tackle/Gear Expenses (Total for vip inctuding light sticks, line gangions, hooks, etc.)	\$
Grocery Expenses	\$
Other Expenses	\$
TOTAL TRIP COSTS (All costs incmred for this mpectuding	
End of Trip Payment Summary Luted helow)	\$

Figure 13. PELAGIC LOGBOOK SET FORM (The White Book)

Revised (9-97)

IMPORTANT INSTRUCTIONS

Please print all information clearly.

DESTROY OLD_FORMS. USE ONLY CIRRRENT YEAR FORMS.

$\rightarrow \rightarrow$ Please use a separate \log sheet for each set.

Record the, Official Vessel Number.

Designate primary Target species.

Record Gear Used.

Record Set Date (calendar day when set began) and Haulback Date.

Enter Times when using longlines or gillnets for:
-- Begin Set and Begin Haulback (designate AM or PM)

- End Set and End Haulback (designate AM or PM)

At the start of each set, record the location to the nearest degree of LAT (Latitude) and LON (Longitude), and the Surface Water Temperature, in degrees Fahrenheit.

Enter the following data for each set if using Longline gear:

```
- Numaber of hooks set
- Number of hooks between floats
- Number of light sticks
- Length of Mainline (in miles)
- Length of Gangions (in fathoms)
- Length of Floatline (in fathoms)
- Did you use a line thrower?
- Were you tending or rebaiting hooks before haulbmck? If yes, specify how many hooks were rebaited.
- Bait: indicate Live, Dead or Artificial.
```

Enter the following data for each set if using Gilmet:

```
- Mesh Size (in inches)
- Total drift gilmet net length (is fathoms)
- Fishing Depth Range (Depth of top and of Bottom of net in fathoms)
```

Enter the following data for each set if using Pair Trawl
Pair trawl vessels should fill out a daily form for each set made. Species information should be filled out only by the vessel that hauls bock the net.

```
- Fishing Circle Mesh Size (in centimeters)
- Number of Meshes Around Fishing Circle (do not include gores)
- Smallest Mesh Size (in centimeters)
- Cod End Mesh Size (in centimeters)
- Official number of other vessel in pair
```

Record Estimated total dressed weight (in pounds) of fish kept.

Record NUMBERS OF SWORDFISH, TUNAS, SHARKS AND OTHER SPECIES KEPT AND THROWN BACK. Specify the number of fish that were thrown back Alive and the number thrown back Dead.

Record NUMBERS OF SEA TURTLES INVOLVED

- Total Number Involved. Write down the total number of each sea turtle species that were caught in, or interacted with, your fishing gear for the period of your report.
- Number Injured. Write down the number of each sea turtle species that were injured while in, or by, your fishing gear.
- Number Dead. Write dowit the mumber of each sem turtle species that were observed to be dead while in, or by, your fishing gear.

Mail original logs to NMFS at the end of the fishing trip in pre-addressed envelopes along with the Trip Summary Form and weighout slip.
Mailing should be postmarked not later than the 7th day after the sale of the catch.
Monthly reporting for individuals holding a Swordith permit will be considered complete and in compliance with the regutations only if 1) the trip summaries for each trip completed during the month, individual set records for each set made during the frip(s), and tally reconds for all fish sold are provided or 2) a no fishing report is provided.

Figure 15. NO FISHING FORM.
OMB \# 0648-0016 Exp. 9/30/2000

NMFS Use Only: Opened:	Schedule \#

NO FISHING REPORTING FORM

VESSEL ID. NO. \qquad VESSEL NAME: \qquad
During the entire month of \qquad , year \qquad , this vessel DID NOT FISH in the fisheries checked below:
more than one fishery may be checked
-
DO NOT check any fishery if your vessel does not have a permit for it.
\qquad Pelagic (Swordfish)
_ South Atlantic Snapper-Grouper
_ Gulf of Mexico Reef Fish
_ Shark
___ King Mackerel
__ Spanish Mackerel
Signature \qquad Phone () \qquad - \qquad
RETAIN THIS COPY FOR YOUR RECORDS
OMB \# 0648-0016 Exp. 9/30/2000

MMHS USe Only:
 Opered:

Schedute\#

NO FISHING REPORTING FORM
VESSEL ID. NO. \qquad VESSEL NAME: \qquad During the entire month of \qquad , year \qquad , this vessel DID NOT FISH in the fisheries checked below:
-
more than one fishery may be checked
-
DO NOT check any fishery if your vessel does not have a permit for it.
_ Pelagic (Swordfish)
__ South Atlantic Snapper-Grouper
___ Gulf of Mexico Reef Fish
_ Shark
___ King Mackerel
__ Spanish Mackerel
Signature \qquad Phone () \qquad $-$

Table 1. TOTAL NUMBER OF SWORDFISH, TUNA, AND BILLFISH REPORTED CAUGHT BY LONGLINE BOATS, BY AREA, AND EFFORT IN NUMBER OF HOOKS, FROM THE SWORDFISH MANDATORY LOGBOOKS, FOR (a) 1994, (b) 1995 and (c) 1996 (PRELIMINARY). NUMBERS CAUGHT REPRESENT KEPT PLUS DISCARDED (DEAD OR ALIVE). SEE FIGURE I FOR DESIGNATION OF AREAS. (SWD=SWORDFISH; YFT=YELLOWFIN; BET=BIGEYE; BFT=BLUEFIN; ALB=ALBACORE; WHM=WHITE MARLIN; BUM=BLUE MARLIN; SAI=SAILFISH.)

1 1 \% 4 \%										
Area	SWD	YFT	BET	BFT.	ALB	WHM	BUM	SAI	HOOKS	BOATS
CAR	16479	1554	894	10	189	202	881	56	629690	42
GOM	12642	31963	316	135	128	545	622	995	2459872	115
FEC	17696	805	1849	43	423	205	333	478	696754	85
SAB	15072	4418	139	133	115	199	429	308	826025	83
MAB	8847	22480	10817	219	4896	831	106	30	2189715	105
NEC	4043	5595	5154	904	2739	235	63	4	768585	59
NED	20967	462	2190	52	930	14	15	0	810118	35
SAR	2289	280	801	78	1070	109	45	3	206554	37
NCA	5367	1309	521	2	653	51	119	23	286300	34
TUN	201	1213	147	1	26	159	316	62	70523	7
TUS	0	0	0	0	0	0	0	0	0	0
TOTAL	103603	70079	22828	1577	11169	2550	2929	1959	8944136	282

10. 42%										
Area	SWD	YFT.	BET	BFT	All B	WHM	BUM	SAI	HoOKS	BOATS
CAR	13572	1857	1309	0	181	272	699	89	598704	42
GOM	16626	25717	880	116	128	645	553	666	2648273	140
FEC	13560	1017	1355	44	494	120	134	159	643091	67
SAB	10234	7373	125	41	116	191	262	164	853595	77
MAB	7149	35770	8437	1764	5181	834	166	18	2385664	108
NEC	4026	7137	6378	1163	4187	363	63	1	1054433	56
NED	21615	526	3731	22	323	22	16	0	766685	24
SAR	206	40	88	18	142	3	4	1	25480	12
NCA	14987	1599	954	13	3534	338	385	42	854809	38
TUN	1154	3215	351	0	173	378	594	97	224784	15
TUS	8	75	7	0	0	0	21	1	3000	1
TOTAL	103137	84326	23615	3181	14459	3166	2897	1238	10058518	299

14.445

Area	SWD	YFT	BET	BFT	ALB	WHM	BUM	SAI	HOOKS	BOATS
CAR	12696	780	841	0	294	171	460	44	639048	57
GOM	18710	31568	396	106	116	913	832	563	3566789	132
FEC	13394	762	1410	28	248	107	203	300	587319	74
SAB	15887	6102	1041	81	586	284	385	247	1647730	87
MAB	1924	10199	2244	197	467	271	48	14	1018097	86
NEC	1661	5860	4965	1449	924	407	250	10	1090304	62
NED	14494	363	3527	15	896	12	3	0	596782	22
SAR	722	79	379	16	382	33	6	2	76185	12
NCA	6552	888	571	1	858	160	134	13	480665	31
TUN	4508	4558	1714	0	219	420	820	188	358431	16
TUS	4088	742	804	0	83	35	112	31	163711	8
TOTAL	94636	61901	17892	1893	5073	2813	3253	1412	10225061	264

Table 2. TOTAL NUMBER OF SWORDFISH, TUNA, AND BILLFISH REPORTED CAUGHT BY GILLNET BOATS, BY AREA, AND EFFORT IN NUMBER OF SETS AND NUMBER OF BOATS, FROM THE SWORDFISH MANDATORY LOGBOOKS, FOR (a) 1994, (b) 1995 and (c) 1996 (PRELIMINARY). NUMBERS CAUGHT REPRESENT KEPT PLUS DISCARDED (DEAD OR ALIVE). SEE FIGURE 1 FOR DESIGNATION OF AREAS. (SWD=SWORDFISH; YFT=YELLOWFIN; BET=BIGEYE; BFT=BLUEFIN; ALB=ALBACORE; WHM=WHITE MARLIN; BUM=BLUE MARLIN; SAI=SAILFISH.)
\% \% \% \%

| Area | SWD | YFT | BET | BFT | ALB | WHM | BUM | SAI | SETS | BOATS |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| MAB | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
| NEC | 203 | 216 | 0 | 1 | 6 | 0 | 0 | 0 | 57 | 5 |
| NED | 839 | 76 | 43 | 14 | 143 | 0 | 1 | 0 | 131 | 11 |
| TOTAL | 1042 | 292 | 44 | 15 | 149 | 0 | 1 | 0 | 189 | 12 |

20\#593

| Area | SWD | YFT | BET | BFT | ALB | WHM | BUM | SAI | SETS | BOATS |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| NEC: | 1007 | 141 | 61 | 108 | 129 | 4 | 0 | 0 | 149 | 12 |
| TOTAL. | 1007 | 141 | 61 | 108 | 129 | 4 | 0 | 0 | 149 | 12 |

Arra	SWD	IFT	BET	BFT	ALB	WHM	BUM	SAI	SETS	BOATS
MAB	3	0	1	0	0	0	0	0	11	2
NEC	877	64	10	35	20	0	0	0	135	9
TOTAL	880	64	11	35	20	0	0	0	146	11

Table 3. YEARLY TABULATIONS FOR SWORDFISH AND YELLOWFIN TUNA FOR (a) 1994, (b) 1995 AND (c) 1996 (PRELIMINARY). THE AREAS ARE DEFINED IN FIGURE 1. INFORMATION INCLUDES NUMBER OF FISH KEPT PLUS DISCARDED (K\&D); PERCENTAGE KEPT (\%K), PERCENTAGE DISCARDED DEAD (\%D DEAD, PERCENTAGE DISCARDED ALIVE (\%D LIVE); EFFORT IN HOOKS (HOOKS); NUMBER OF SETS (N); AND AVERAGE OF THE INDIVIDUAL CATCH RATES [AVG(C/E)], EQUIVALENT TO CPUE IN \# OF FISH/100 HOOKS.

	\%		SWORDFLSH					YELLOWFIN				
APEA	H0OLS	N	K8D	046	DEAD	LIVE	AVG CE	KND	\%K	$\begin{array}{r} 9 \% \mathrm{D} \\ \mathrm{DEAD} \end{array}$	$\stackrel{O D}{\mathrm{LVE}}$	AVG CRE
CAR	632318	1423	16534	80	11	8	2.703	1558	94	2	3	0.246
00M	2999968	4041	13922	39	38	22	0.959	33719	96	2	1	2.705
FIEC	777558	2393	17675	40	41	17	2.861	815	94	0	5	0.095
SAB	1058246	2157	15507	46	38	14	2.021	4428	92	1	5	0.407
MAB	2425091	3531	8903	47	27	25	0.399	22807	91	3	4	1.047
NEC	792255	1086	4050	46	26	26	0.554	5758	91	1	7	1.057
NED	818797	1065	21174	82	10	7	2.629	1084	73	25	0	0.195
SAR	207054	367	2289	86	5	8	1.148	280	94	2	3	0.132
NCA	290984	440	5409	93	2	3	1.90	1198	96	2	1	0.382
TEN	71123	107	201	70	8	20	0.289	1220	94	4	0	1.698
TUS	0	0	0									
TOTAL	10073394	16610	105664	60	25	14	1.507	72867	94	2	3	1.074

K			SWORDPISH					YELLOWFAN				
AREA.	HOOKS.	N	K\&D	$\% \mathrm{~K}$	$\begin{array}{r} \% \mathrm{D} \\ \mathrm{DEAD} \end{array}$	$\stackrel{\circ D}{\mathrm{LI} \mathrm{E}}$	AVG C/E	K2D	$\% \mathrm{~K}$	DEAD	$\begin{gathered} \% \mathrm{D} \\ \mathrm{LIVE} \end{gathered}$	AVO CIE
CAR	603874	1362	13498	81	10	8	2.297	1865	89	1	8	0.292
COM	3205894	4311	17444	60	25	14	1.134	27078	97	1	0	2.649
FEC	677955	2119	13519	53	30	15	2.375	1016	93	2	3	0.127
SAB	1046666	1945	10211	63	23	13	1.278	7367	97	1	1	1.275
MAB	2552893	3618	7115	50	28	20	0.293	35633	96	1	1	1.457
NEC	1061338	1291	4020	53	24	22	0.396	7129	95	2	1	0.709
NED	775395	986	21548	78	12	8	2.830	769	96	0	3	0.097
SAR	25480	41	206	80	7	11	0.904	40	97	0	2	0.162
NCA	862328	1216	14938	92	4	3	1.983	1755	95	0	3	2.722
TUN	224784	319	1154	69	11	19	0.510	3215	97	1	0	1.465
TUS	3000	5	8	25	25	50	0.263	75	100	0	0	2.531
TOTAP	11039607	17213	103661	70	18	11	1.308	85942	96	1	1	1.432

Table 4. ATLANTIC SWORDFISH RESOURCE STATUS SUMMARY

	North Atlantic	South Atlantic
Maximum Sustainable Yield	$13,000(5,300-16,500 \mathrm{MT})^{3}$	14,200 MT (5,200-16,900MT)
Current (1996) Yield	14,763 MT	17,983 MT
Current (1996) Replacement Yield'	$11,300 \mathrm{MT}(7,120-16,710 \mathrm{MT})$	$14,620 \mathrm{MT}(8,400-17,140 \mathrm{MT})$
Relative Biomass ($\mathrm{B}_{1} / \sim / \mathrm{B}_{-9}$)	0.58 (0.41-1.04 MT)	0.99 (0.82-1.18)
Relative Fishing Mortality,		
	2.05 (1.07-3.82) ${ }^{1}$	1.24 (0.94-1.93)
($\mathrm{F}_{\text {ser }} / \mathrm{F}_{\text {me }}{ }^{2}$	2.4	not estimated ${ }^{4}$
$\mathrm{F}_{1,2} \mathrm{~F}_{\mathrm{p}, 1} \mathrm{l}^{\text {a }}$	3.5	not estimated ${ }^{\text {d }}$
Management Measures in Effect	25 kg minimum size; Country-specific quotas	Limit catch to 1993 or 1994 levels

${ }^{1}$ Base case production model results based on catch data 1950-1995
${ }^{2}$ Base case VPA results based on catch data through 1995
${ }^{3} 80 \%$ confidence intervals are shown
${ }^{4}$ Production model results do not provide basis for these estimates

Table 5. ATLANTIC AND MEDITERRANEAN ALBACORE RESOURCE STATUS SUMMARY

	North Athatic	South Atlantic	Mediterranean
Maximum Sustainable Yield	poorly estimated	26,400	not estimated
Current (1996) Yield	28,761	24,098	unknown
Current (1997) Replacement Yield	poorly estimated	26,500	not estimated
Relative Biomass			
$\mathrm{B}_{19 \mathrm{w}} / \mathrm{B}_{\text {nor }}$	poorly estimated	0.78	-
SPR	0.165	-	-
$\mathrm{R}_{\mathrm{ms}} / \mathrm{R}_{3 s} \cdot \mathrm{~m}$	0.782	-	-
Relative Fishing Mortality:			
$\mathrm{F}_{1}, \mathrm{~F}_{\mathrm{mos}}$	poorly estimated	1.16	not estimated
$\mathrm{Fingos}^{\text {F }}=$	0.798	-	
Management Measures in Effect	none	Limit catches to 90% of the average 1989-1993 levels	none

[^0]Table 6. BIGEYE TUNA RESOURCE STATUS SUMMARY

Maximum Sustainable Yield (likely range)	70,000-90,000 M ${ }^{*}$
Current (1996) Yield	107,300 MT
Current (1996) Replacement Yield**	$60,000-80,000 \mathrm{MT}$
Relative Biomass ($\mathrm{B}_{\mathrm{vgr}} / \mathrm{B}_{\operatorname{may}}$)	0.6-0.8
	$\begin{aligned} & 1.5-2.2 \\ & 1.1-1.5 \\ & 0.8-1.2 \end{aligned}$
Management Measures in Effect	3.2 kg minimum size

*This range is representative of MSY ranges predicted by ASPIC and PRODFIT models.
** Non-equilibrium production model (ASPIC)
***Assumes a range of average fishing mortalities over the years 1993-95 of 0.38-0.53 for age 1 fish, based on VPA analyses
In this table, ranges of point estimates were given for replacement yields and relative ratios.
Table 7. YELLOWFIN TUNA RESOURCE STATUS SUMMARY

	Results of the 1994 Assessment	Results of the 1997 Assessment
Maximum Sustainable Yield		
Equilibrium model	153.7^{1}	
Non-equilibrium model	$149.0(123.0-164.0)^{3}$	$\begin{aligned} & 154.0^{2} \\ & \text { not estimated } \end{aligned}$
Current (1995) Yield		136.9
Current (1994) Replacement Yield	(123.0-164.0) ${ }^{4}$	not available
Relative Biomass ($\mathrm{B}_{\text {oon }} / \mathrm{B}_{\text {Hy }}$)	1.05 (0.81-1.30)	not estimated
Relative Fishing Mortality ($\mathrm{F}_{\text {isoo }} / \mathrm{F}_{\text {msy }}$)	0.92 (0.67-1.34)	not estimated
Management Measures in Effect	3.2 kg minimum size	3.2 kg minimum size
	Effective effort not to exceed 1992 level	Effective effort not to exceed 1992 level
1. Equilibrium model assuming shape parameter for production function ($m=1$) calculated at 1994 SCRS using data from 1969-93.		
2. Equilibrium model assuming shape parameter ($m=1$) calculated at 1997 SCRS using data from 1969-96.		
3. Non-equilibrium production model fit to data $1969-93$ at the 1994 SCRS. Assumes production function shape parameter $m=2.80 \%$ confidence bounds.		
4. Replacement yield in 1994 estimated within the 80% confidence interval estimated MSY from the non-equilibrium production model since		

Table 8. NUMBERS OF PERMITTED VESSELS

Table 9. MONTHLY SWORDFISH LANDINGS IN LBS DRESSED WEIGHT FROM 1990 TO 1996.

YEAD:	JAN	128.	NiPR	A	WY	HN\%	
1890	839,178	794,926	760,177	631,254	493,183	449,220	
1991	613,177	619,188	554,422	465,789	416,747	432,630	
180	514,101	575,942	520,299	374,432	358,252	317,612	
I993	561,698	648,585	470,918	341,690	365,752	337,134	
19%	484,972	472,599	458,475	327,608	299,262	383,626	
1995	889,512	811,460	630,410	488,293	S54,793	467,913	
19%	596,262	738,304	509,953	388,765	363,694	351,284	
	HL	AUC	NH SEPT:	OCT	NOV	DEC	TOTAL
1990	895,303	888,258	851,158	1,053,476	806,843	644,159	9,107,135
1091	709,718	773,515	816,558	766,909	527,175	446,311	7,142,139
1992	561,906	731,830	727,037	891,336	423,457	387,010	6,383,214
1993.	582,835	585,084	647,994	755,021	589,865	387,627	6,274,203
1994.	290,811	539,202	560,993	672,465	592,585	495,542	5,578,140
1993	493,062	651,421	654,380	850,667	145,897	126,307	6,764,115
1996	370,895	568,722	635,336	525,918	455,680	384,352	5,889,165

Table 10. PERCENTAGE OF ANNUAL U.S. SWORDFISH LANDED CATCH < 41 LBS BY AREAS (TOTAL ANNUAL CATCH OF SWORDFISH IN AREA TOTAL ANNUAL CATCH OF SWORDFISH IN ALL AREAS).

CATCH OF SWORDFISH IN AREA TOTAL ANNUAL CATCH OF SWORDFISH IN ALL AREAS).								
YEAR.	CAR!	COM	FEC	SAB	MAB	NEC.	NED	SUM
1989	13	18	24	5	8	9	23	100
1990	15	12	30	5	14	11	14	101
1991.	16	21	23	4	9	7	21	101
1992	15	18	20	5	9	8	25	100
1993	18	14	15	9	7	7	30	100
1994	28	9	14	10	9	4	25	99
1995	26	25	10	9	3	4	22	99
1996	32	21	11	15	2	3	16	100

Table 11. PERCENTAGE OF ANNUAL US SWORDFISH LANDED CATCH < 41 LBS BY AREAS (ANNUAL OF CATCH OF SWORDFISH < 41 LBS IN AREA/ TOTAL ANNUAL CATCH OF SWORDFISH IN ALL AREAS).

Table 12. PERCENTAGE OF SWORDFISH LANDED CATCH < 41 LBS WITHIN AREAS (ANNUAL CATCH OF SWORDFISH < 41 LBS IN AREA / ANNUAL CATCH OF SWORDFISH IN AREA).

YEAP	car':	com	IEC.	SAB	MAB	NEC.	NED.
1989	36	53	55	66	61	33	32
1990	23	60	52	60	50	24	22
1993.	15	51	39	53	22	10	8
1992	9	26	21	24	10	11.	10
1993	9	20	15	16	14	8	11
1994	13	21	15	15	13	11	9
1999.	11	23	15	17	12	16	15
199\%.	12	20	23	21	18	10	9

[^0]: ${ }^{1}$ Results of the ASPM were very sensitive for the north. Therefore, estimates are not included in the table.
 ${ }^{2} 95 \%$ Confidence interval range in parenthesis
 ${ }^{3}$ Spawning Potential Ratio.
 ${ }^{4}$ Recruitment level during 1989-1993 compared to 1975-1980

 - = not estimated

